

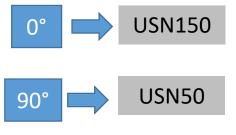
Experimental observations on the effect of the 90 degree ply blocks thickness on the strength of 0/90 laminates

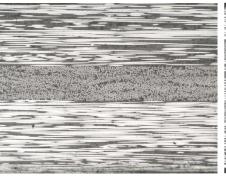
M.L. Velasco, E. Correa, F. París

Group of Elasticity and Strength of Materials Continuum Mechanics and Theory of Structures Department School of Engineering Universidad de Sevilla

How the fibre-dominated strength of a multidirectional laminate relates to the strength of a UD composite March 28th, 2023

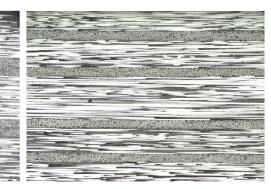
Projects P18-FR-3360 and PID2021-126279OB-I00




MOTIVATION/OBJECTIVE

SCALE EFFECT First transverse damage/crack appearance dependence on the thickness of the 90° ply block in $[0_n \ 90_m]_s$ laminates

Differences in the damage mechanism → Energetic explanation (*)


 $[\mathbf{0}_3, \mathbf{90}_4, \mathbf{0}_3]$

First damage appearance comparison

OBJECTIVES

Morphologies comparison for the same loading level

Ultimate loads comparison

 $[{\bf 0}_2, {\bf 90}_2, {\bf 0}_2, {\bf 90}_{2_j} {\bf 0}_2]$

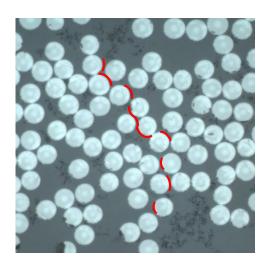
[0, 90, 0, 90, 0, 0, 90, 0, 90, 0]

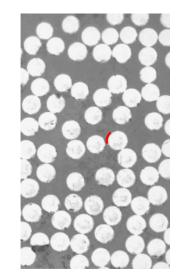
(*)

- París F, Velasco M L, Correa E. The scale effect in composites: An explanation physically based on the different mechanisms of damage involved in failure, Comp Struct 2021;257:113089.

- París F, Velasco M L, Correa E. Micro-mechanical study on the influence of scale effect in the first stage of damage in composites, Comp Sci Tech 2018;160:1-8.

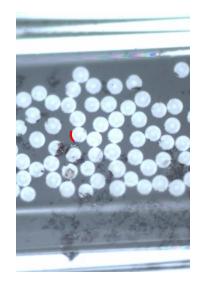
M.L. Velasco, E. Correa, F. París, The Scale Effect in composites, an explanation based on the mechanisms of damage, 2nd Edition- Modeling Damage, Fatigue and Failure of Composite Materials, 2023. (in press).
París, F., Velasco, M.L., Correa, E. (2020). Modelling fibre/matrix interface debonding and matrix cracking in composite laminates. En: Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites. Editor: Wim Van Paepegem. Elsevier. ISBN: 9780128189856





4000N-7000N

 $[\mathbf{0}_3, \mathbf{90}_4, \mathbf{0}_3]$

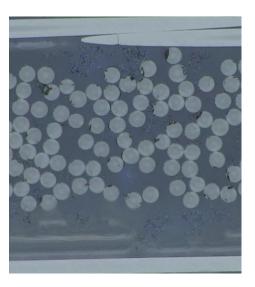


ISOLATED/CONNECTED DEBONDS $[\mathbf{0}_2, \mathbf{90}_2, \mathbf{0}_2, \mathbf{90}_2, \mathbf{0}_2]$

ISOLATED DEBONDS

[0, 90, 0, 90, 0, 0, 90, 0, 90, 0]

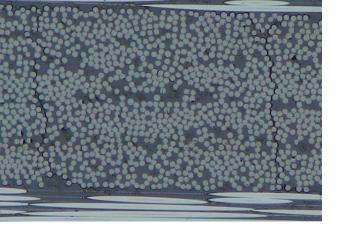
ISOLATED DEBONDS

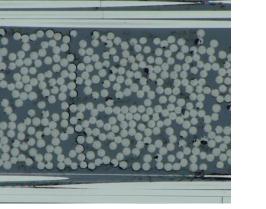


30000N-35000N

 $[0_3, 90_4, 0_3]$

[0, 90, 0, 90, 0, 0, 90, 0, 90, 0]

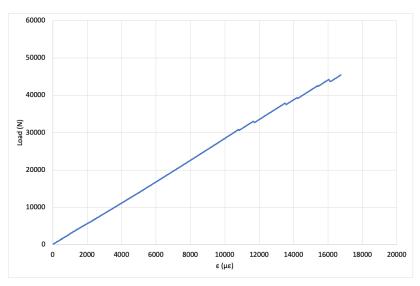


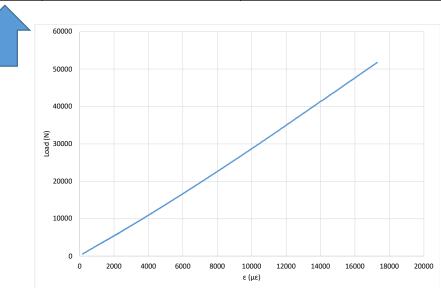

TRANSVERSE CRACKS (SATURATION) AND DELAMINATION

TRANSVERSE CRACKS AND DELAMINATION

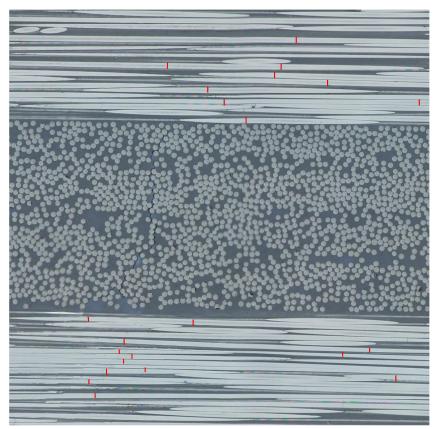
ISOLATED/CONNECTED DEBONDS

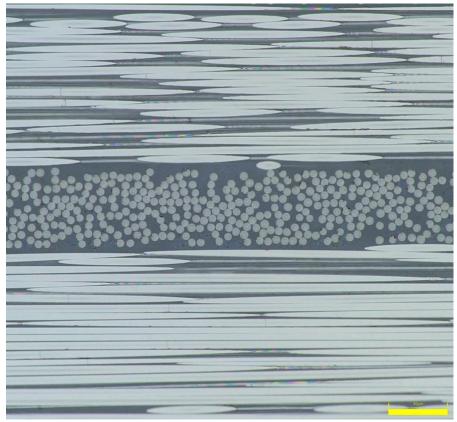
 $[0_2, 90_2, 0_2, 90_2, 0_2]$


ULTIMATE LOADS



		Rupture values (N)		
		[0 ₃ , 90 ₄ , 0 ₃]	$[0_2, 90_2, 0_2, 90_2, 0_2]$	[0, 90, 0, 90, 0, 0, 90, 0, 90, 0]
12	P1	41898	56143	51235
	P2	45381	54671	51748
111	P3	42369	49541	56230
	P4	48565	54000	56829
	Mean value	44553	53589	54010
	SD	3087	2843	2927
	C.V.(%)	6,9	5,3	5,4




DAMAGE IN THE 0° PLIES

30000N-35000N

$[\mathbf{0}_3, \mathbf{90}_4, \mathbf{0}_3]$

[0, 90, 0, 90, 0, 0, 90, 0, 90, 0]

First damage appearance comparison

Less advanced as the 90° ply blocks thickness decreases

Morphologies comparison for the same loading level The less thickness of the 90° ply blocks, the less advanced the damage found both in the 90° plies and the 0° plies

Ultimate loads comparison

20% lower for [0₄ 90₃ 0₄]

Which are the factors affecting the strength of a cross ply laminate?

- Number of 0º plies involved
- Laminate thickness

Staking sequence? 90º/0º thickness ratio?

Experimental observations on the effect of the 90 degree ply blocks thickness on the strength of 0/90 laminates

M.L. Velasco, E. Correa, F. París

Group of Elasticity and Strength of Materials Continuum Mechanics and Theory of Structures Department School of Engineering Universidad de Sevilla

How the fibre-dominated strength of a multidirectional laminate relates to the strength of a UD composite March 28th, 2023

Projects P18-FR-3360 and PID2021-126279OB-I00